Title of article :
Quantitative assessment of solid oxide electrochemical doping
Author/Authors :
Kamada، نويسنده , , Kai and Udo، نويسنده , , Shintaro and Yamashita، نويسنده , , Shuichi and Tsutsumi، نويسنده , , Yuko Mizuno-Matsumoto، نويسنده , , Yasumichi، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2003
Pages :
6
From page :
389
To page :
394
Abstract :
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.
Keywords :
Electrochemical doping , Stabilized zirconia , ??-Al2O3 , microelectrode
Journal title :
Solid State Ionics
Serial Year :
2003
Journal title :
Solid State Ionics
Record number :
1715397
Link To Document :
بازگشت