Title of article :
On the relationship between the Bruno function and the breakdown of invariant tori
Author/Authors :
Locatelli، نويسنده , , Ugo and Froeschlé، نويسنده , , Claude and Lega، نويسنده , , Elena and Morbidelli، نويسنده , , Alessandro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
24
From page :
48
To page :
71
Abstract :
We study the ratio εc(ω)/exp(−ηB(ω)), where εc(ω) is the breakdown threshold function for an analytic invariant torus, η is a parameter and B(ω) is the Bruno function, which is purely arithmetic (i.e., it only depends on the number theory properties of ω). We consider the standard map as a model and we focus our analysis on the exponential decay of the chaotic regions close to an invariant torus with Diophantine rotation frequency. Our numerical experiments, together with some heuristic considerations, strongly suggest that εc(ω)/exp(−ηB(ω)) is not a continuous function on Diophantine numbers ω, for all values of η.
Keywords :
Hamiltonian systems , number theory , Bruno function , Quasiperiodic motions
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2000
Journal title :
Physica D Nonlinear Phenomena
Record number :
1723638
Link To Document :
بازگشت