Title of article :
Instabilities of hexagonal patterns with broken chiral symmetry
Author/Authors :
Echebarria، نويسنده , , Blas and Riecke، نويسنده , , Hermann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
12
From page :
97
To page :
108
Abstract :
Three coupled Ginzburg–Landau equations for hexagonal patterns with broken chiral symmetry are investigated. They are relevant for the dynamics close to onset of rotating non-Boussinesq or surface-tension-driven convection. Steady and oscillatory, long- and short-wave instabilities of the hexagons are found. For the long-wave behavior coupled phase equations are derived. Numerical simulations of the Ginzburg–Landau equations indicate bistability between spatio-temporally chaotic patterns and stable steady hexagons. The chaotic state can, however, not be described properly with the Ginzburg–Landau equations.
Keywords :
Hexagon patterns , Spatio-temporal chaos , Phase equation , Sideband instabilities , Rotating convection , Ginzburg–Landau equation
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2000
Journal title :
Physica D Nonlinear Phenomena
Record number :
1723647
Link To Document :
بازگشت