Title of article :
Structural classification and stability of divergence-free vector fields
Author/Authors :
Ma، نويسنده , , Tian and Wang، نويسنده , , Shouhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
20
From page :
107
To page :
126
Abstract :
It is proved that a divergence-free vector field v on a 2D submanifold of S2 is structurally stable with divergence-free vector field perturbations if and only if (1) v is regular, (2) all interior saddle points of v are self-connected, and (3) each boundary saddle point is connected to boundary saddles on the same connected component of the boundary. The main motivation of this article and the companying articles [Indiana Univ. Math. J. 50 (1) (2001) 159; Appl. Math. Lett. 12 (1999) 39; Am. Math. Soc. 238 (1999) 193; Dynamics of 2D incompressible flows, in: P. Bates, K. Lu, D. Xu (Eds.), Differential Equations and Computational Simulations, World Scientific, Singapore, 2000, pp. 270–276; Math. Model. Numer. Anal. 34 (2) (2000) 419; Nonlin. Anal.: Real World Appl. 2 (2001) 467; Discrete Contin. Dyn. Syst. 7 (2) (2001) 431; Discrete Contin. Dyn. Syst., Ser. B 1 (1) (2001) 29] is to develop a geometric theory of 2D incompressible fluid flows in the physical spaces.
Keywords :
Poincaré–Bendixson theorem , Manifolds with boundary , structural stability , fluid dynamics , Divergence-free vector fields , Ocean/atmosphere dynamics , Structural classifications
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2002
Journal title :
Physica D Nonlinear Phenomena
Record number :
1724747
Link To Document :
بازگشت