Title of article :
Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems
Author/Authors :
Kapitula، نويسنده , , Todd and Kevrekidis، نويسنده , , Panayotis G. and Sandstede، نويسنده , , Bjِrn، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
20
From page :
263
To page :
282
Abstract :
Spectra of nonlinear waves in infinite-dimensional Hamiltonian systems are investigated. We establish a connection via the Krein signature between the number of negative directions of the second variation of the energy and the number of potentially unstable eigenvalues of the linearization about a nonlinear wave. We apply our results to determine the effect of symmetry breaking on the spectral stability of nonlinear waves in weakly coupled nonlinear Schrِdinger equations.
Keywords :
Nonlinear , Krein signature , Hamiltonian
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2004
Journal title :
Physica D Nonlinear Phenomena
Record number :
1725688
Link To Document :
بازگشت