Title of article :
Stability of discrete solitons in nonlinear Schrِdinger lattices
Author/Authors :
Pelinovsky، نويسنده , , D.E. and Kevrekidis، نويسنده , , P.G. and Frantzeskakis، نويسنده , , D.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
We consider the discrete solitons bifurcating from the anti-continuum limit of the discrete nonlinear Schrِdinger (NLS) lattice. The discrete soliton in the anti-continuum limit represents an arbitrary finite superposition of in-phase or anti-phase excited nodes, separated by an arbitrary sequence of empty nodes. By using stability analysis, we prove that the discrete solitons are all unstable near the anti-continuum limit, except for the solitons, which consist of alternating anti-phase excited nodes. We classify analytically and confirm numerically the number of unstable eigenvalues associated with each family of the discrete solitons.
Keywords :
Discrete solitons , Existence and stability , Discrete nonlinear Schr?dinger equation , Lyapunov–Schmidt reductions
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena