Title of article :
Vanishing viscosity limit for incompressible flow inside a rotating circle
Author/Authors :
Lopes Filho، نويسنده , , M.C. and Mazzucato، نويسنده , , A.L. and Nussenzveig Lopes، نويسنده , , H.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
1324
To page :
1333
Abstract :
In this article we consider circularly symmetric incompressible viscous flow in a disk. The boundary condition is no-slip with respect to a prescribed time-dependent rotation of the boundary about the center of the disk. We prove that, if the prescribed angular velocity of the boundary has finite total variation, then the Navier–Stokes solutions converge strongly in L 2 to the corresponding stationary solution of the Euler equations when viscosity vanishes. Our approach is based on a semigroup treatment of the symmetry-reduced scalar equation.
Keywords :
Euler and Navier–Stokes , Vanishing viscosity limit , Circular symmetry , Boundary layer , Rotating boundary
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2008
Journal title :
Physica D Nonlinear Phenomena
Record number :
1726486
Link To Document :
بازگشت