Title of article :
Synthesis, thermal stability, light emission, and fluorescent photopatterning of poly(diphenylacetylene)s carrying naphthalene pendant groups
Author/Authors :
Law، نويسنده , , Charles C.W. and Lam، نويسنده , , Jacky W.Y. and Qin، نويسنده , , Anjun and Dong، نويسنده , , Yongqiang and Kwok، نويسنده , , Hoi Sing and Tang، نويسنده , , Ben Zhong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
Naphthalene (Nap)-containing poly(diphenylacetylene)s with different spacer lengths (–{C6H5CC[C6H4O(CH2)mO–Nap]}n–; P1(m), m = 4, 6, 8) are synthesized. The monomers are prepared by etherifications of 1,m-dibromoalkanes with 1-naphthol and 1-(4-hydroxy)phenyl-2-phenylacetylene and are polymerized by TaCl5–n-Bu4Sn and WCl6–Ph4Sn catalysts. Whereas the tantalum-based catalyst gives insoluble products in low yields, the tungsten-based catalyst furnishes soluble polymers with high molecular weights (Mw up to 5.0 × 104) in satisfactory yields (up to 62%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, UV, PL, and EL analyses. All the polymers are thermally stable: while the polymers lose 5% of their weights at ∼420 °C under nitrogen, no decreases in molecular weights are found after they have been annealed at 200 °C for 2 h in air. When their THF solutions are photoexcited, the polymers emit strong green lights with high efficiencies (up to 98%). No significant shifts in the photoluminescence spectra are observed when the polymers are cast into thin solid films, suggestive of little involvement of aggregative or excimeric emission. A multilayer EL device with a configuration of ITO/P1(8):PVK/BCP/Alq3/LiF/Al is constructed, which emits a green light of 520 nm with a maximum external quantum efficiency of 0.16%. The spectral stability is outstanding: no recognizable change is observed in the EL spectrum when the device current is raised. Irradiation of a film of P1(8) through a mask photooxidizes and quenches the emission of the exposed regions, resulting in the formation of two-dimensional luminescent photopatterns.
Keywords :
Light emission , Polyacetylene , photopatterning