Title of article :
Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks
Author/Authors :
Bocchi، نويسنده , , L. and Coppini، نويسنده , , G. and Nori، نويسنده , , J. and Valli، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Microcalcifications (μCas) are often early signs of breast cancer. However, detecting them is a difficult visual task and recognizing malignant lesions is a complex diagnostic problem. In recent years, several research groups have been working to develop computer-aided diagnosis (CAD) systems for X-ray mammography. In this paper, we propose a method to detect and classify microcalcifications. In order to discover the presence of μCas clusters, particular attention is paid to the analysis of the spatial arrangement of detected lesions.
tal model has been used to describe the mammographic image, thus, allowing the use of a matched filtering stage to enhance microcalcifications against the background. A region growing algorithm, coupled with a neural classifier, detects existing lesions. Subsequently, a second fractal model is used to analyze their spatial arrangement so that the presence of microcalcification clusters can be detected and classified.
ed results indicate that fractal models provide an adequate framework for medical image processing; consequently high correct classification rates are achieved.
Keywords :
Artificial neural networks , Fractal dust , mammography , microcalcifications , Microcalcification clusters , Fractional Brownian motion
Journal title :
Medical Engineering and Physics
Journal title :
Medical Engineering and Physics