Title of article :
A maximally superintegrable system on an -dimensional space of nonconstant curvature
Author/Authors :
Ballesteros، نويسنده , , ء. and Enciso، نويسنده , , A. Martin-Herranz، نويسنده , , F.J. and Ragnisco، نويسنده , , O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We present a novel Hamiltonian system in n dimensions which admits the maximal number 2 n − 1 of functionally independent, quadratic first integrals. This system turns out to be the first example of a maximally superintegrable Hamiltonian on an n -dimensional Riemannian space of nonconstant curvature, and it can be interpreted as the intrinsic Smorodinsky–Winternitz system on such a space. Moreover, we provide three different complete sets of integrals in involution and solve the equations of motion in closed form.
Keywords :
Variable curvature , Coalgebra symmetry , Superintegrable systems
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena