Title of article :
Hamiltonian evolution of curves in classical affine geometries
Author/Authors :
Marي Beffa، نويسنده , , Gloria، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
100
To page :
115
Abstract :
In this paper we study geometric Poisson brackets and we show that, if M = ( G ⋉ R n ) / G endowed with an affine geometry (in the Klein sense), and if G is a classical Lie group, then the geometric Poisson bracket for parametrized curves is a trivial extension of the one for unparametrized curves, except for the case G = GL ( n , R ) . This trivial extension does not exist in other nonaffine cases (projective, conformal, etc).
Keywords :
BiHamiltonian structures , Affine Geometries , Completely integrable evolutions
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2009
Journal title :
Physica D Nonlinear Phenomena
Record number :
1728856
Link To Document :
بازگشت