Title of article :
Stability of an -dimensional invariant torus in the Kuramoto model at small coupling
Author/Authors :
Chiba، نويسنده , , Hayato and Pazَ، نويسنده , , Diego، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
14
From page :
1068
To page :
1081
Abstract :
When the natural frequencies are allocated symmetrically in the Kuramoto model there exists an invariant torus of dimension [ N / 2 ] + 1 ( N is the population size). A global phase shift invariance allows us to reduce the model to N − 1 dimensions using the phase differences, and doing so the invariant torus becomes [ N / 2 ] -dimensional. By means of perturbative calculations based on the renormalization group technique, we show that this torus is asymptotically stable at small coupling if N is odd. If N is even the torus can be stable or unstable depending on the natural frequencies, and both possibilities persist in the small coupling limit.
Keywords :
Kuramoto model , Renormalization group method , Quasiperiodicity
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2009
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729006
Link To Document :
بازگشت