Title of article :
Interlaced solitons and vortices in coupled DNLS lattices
Author/Authors :
Cuevas، نويسنده , , J. and Hoq، نويسنده , , Q.E. and Susanto، نويسنده , , H. and Kevrekidis، نويسنده , , P.G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In the present work, we propose a new set of coherent structures that arise in nonlinear dynamical lattices with more than one component, namely interlaced solitons. In the anti-continuum limit of uncoupled sites, these are waveforms whose one component has support where the other component does not. We illustrate systematically how one can combine dynamically stable unary patterns to create stable ones for the binary case of two-components. For the one-dimensional setting, we provide a detailed theoretical analysis of the existence and stability of these waveforms, while in higher dimensions, where such analytical computations are far more involved, we resort to corresponding numerical computations. Lastly, we perform direct numerical simulations to showcase how these structures break up, when they are exponentially or oscillatorily unstable, to structures with a smaller number of participating sites.
Keywords :
Solitons , Discrete nonlinear Schrِdinger equation , Vortices , Manakov model
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena