Title of article :
Heterogeneous meshing and biomechanical modeling of human spine
Author/Authors :
Teo، نويسنده , , J.C.M. and Chui، نويسنده , , C.K. John Wang، نويسنده , , Z.L. and Ong، نويسنده , , S.H. and Yan، نويسنده , , C.H. and Wang، نويسنده , , S.C. and Wong، نويسنده , , H.K. and Teoh، نويسنده , , S.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
277
To page :
290
Abstract :
We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements suitable for deformation and other finite-element analysis using ABAQUS. The mesh generation solution accepts segmented radiological slices as input, and outputs three-dimensional (3D) volumetric finite element meshes that are ABAQUS compliant. The proposed mesh generation method first uses a grid plane to divide the contours of the anatomical boundaries and its inclusions into discrete meshes. A grid frame is then built to connect the grid planes between any two adjacent planes using a novel scheme. The meshes produced consist of brick elements in the interior of the contours and with tetrahedral and wedge elements at the boundaries. The nodal points are classified according to their materials and hence, elements can be assigned different properties. The resultant spine model comprises a detailed model of the 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, and S1. Each of the vertebrae and intervertebral disc has between 1200 and 6000 elements, and approximately 1200 elements, respectively. The accuracy of the resultant VHD™ finite element spine model was good based on visual comparison of volume-rendered images of the original CT data, and has been used in a computational analysis involving needle insertion and static deformation. We also compared the mesh generated using our method against two automatically generated models; one consists of purely tetrahedral elements and the other hexahedral elements.
Keywords :
Mesh generation , MODELING , Finite element method
Journal title :
Medical Engineering and Physics
Serial Year :
2007
Journal title :
Medical Engineering and Physics
Record number :
1729374
Link To Document :
بازگشت