Title of article :
Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion
Author/Authors :
Wang، نويسنده , , Lina and Wu، نويسنده , , Yaping and Li، نويسنده , , Tong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
971
To page :
983
Abstract :
This paper is concerned with the stability of traveling front solutions for 2×2 quasi-linear relaxation systems with small diffusion rate. By applying geometric singular perturbation method, special Evans function estimates, detailed spectral analysis and C 0 semigroup theories, we prove that all the non-degenerate waves for semi-linear relaxation systems are locally exponentially stable in some exponentially weighted spaces. We also obtain the linear exponential stability of the non-degenerate waves for quasi-linear relaxation systems, where the wave strengths can be large.
Keywords :
Spectral Analysis , Large-amplitude traveling fronts , Relaxation system with diffusion , Evans function , Exponential stability , Singular perturbation method
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2011
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729852
Link To Document :
بازگشت