Title of article :
Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painlevé I transcendent
Author/Authors :
Lee، نويسنده , , S.-Y. and Teodorescu، نويسنده , , R. and Wiegmann، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
1080
To page :
1091
Abstract :
In Hele–Shaw flows at vanishing surface tension, the boundary of a viscous fluid develops cusp-like singularities. In recent papers Lee et al. (2009, 2008) [8,9] we have showed that singularities trigger viscous shocks propagating through the viscous fluid. Here we show that the weak solution of the Hele–Shaw problem describing viscous shocks is equivalent to a semiclassical approximation of a special real solution of the Painlevé I equation. We argue that the Painlevé I equation provides an integrable deformation of the Hele–Shaw problem which describes flow passing through singularities. In this interpretation shocks appear as Stokes level-lines of the Painlevélinear problem.
Keywords :
Singular dynamics , Hydrodynamic Instabilities , stochastic growth
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2011
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729871
Link To Document :
بازگشت