Title of article :
A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization
Author/Authors :
Terrier، نويسنده , , Alexandre and Aeberhard، نويسنده , , Martin and Michellod، نويسنده , , Yvan and Mullhaupt، نويسنده , , Philippe and Gillet، نويسنده , , Denis and Farron، نويسنده , , Alain and Pioletti، نويسنده , , Dominique P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated.
thematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements.
reliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Keywords :
Shoulder , Musculoskeletal modeling , Dynamics
Journal title :
Medical Engineering and Physics
Journal title :
Medical Engineering and Physics