Title of article :
Dissipated energy as a method to characterize the cartilage damage in large animal joints: An in vitro testing model
Author/Authors :
Walter، نويسنده , , Christian and Leichtle، نويسنده , , Ulf and Lorenz، نويسنده , , Andrea and Mittag، نويسنده , , Falk and Wülker، نويسنده , , Nikolaus and Müller، نويسنده , , Otto and Bobrowitsch، نويسنده , , Evgenij and Rothstock، نويسنده , , Stephan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
1251
To page :
1255
Abstract :
Several quantitative methods for the in vitro characterization of cartilage quality are available. However, only a few of these methods allow surgical cartilage manipulations and the subsequent analysis of the friction properties of complete joints. This study introduces an alternative approach to the characterization of the friction properties of entire joint surfaces using the dissipated energy during motion of the joint surfaces. sheep wrist joints obtained post mortem were proximally and distally fixed to a material testing machine. With the exception of the carpometacarpal articulation surface, all joint articulations were fixed with ‘Kirschner’ wires. Three cartilage defects were simulated with a surgically introduced groove (16 mm2, 32 mm2, 300 mm2) and compared to intact cartilage without an artificial defect. The mean dissipated energy per cycle was calculated from the hysteresis curve during ten torsional motion cycles (±10°) under constant axial preload (100–900 N). ificant increase in dissipated energy was observed with increasing cartilage defect size and axial load (p < 0.001). At lower load levels, the intact and 16 mm2 defect showed a similar dissipated energy (p > 0.073), while all other defect conditions were significantly different (p = 0.015). All defect sizes were significantly different (p = 0.049) at 900 N axial load. clude that the method introduced here could be an alternative for the study of cartilage damage, and further applications based on the principles of this method could be developed for the evaluation of different cartilage treatments.
Keywords :
sheep model , Cartilage defect , Frictional work capacity , in vitro testing
Journal title :
Medical Engineering and Physics
Serial Year :
2013
Journal title :
Medical Engineering and Physics
Record number :
1732231
Link To Document :
بازگشت