Title of article :
Action categorization with modified hidden conditional random field
Author/Authors :
Zhang، نويسنده , , Jianguo and Gong، نويسنده , , Shaogang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
197
To page :
203
Abstract :
In this paper, we present a method for action categorization with a modified hidden conditional random field (HCRF). Specifically, effective silhouette-based action features are extracted using motion moments and spectrum of chain code. We formulate a modified HCRF (mHCRF) to have a guaranteed global optimum in the modelling of the temporal action dependencies after the HMM pathing stage. Experimental results on action categorization using this model are compared favorably against several existing model-based methods including GMM, SVM, Logistic Regression, HMM, CRF and HCRF.
Keywords :
Action recognition , graph model , Hidden conditional random field , Optimum learning
Journal title :
PATTERN RECOGNITION
Serial Year :
2010
Journal title :
PATTERN RECOGNITION
Record number :
1733099
Link To Document :
بازگشت