Title of article :
Salient feature and reliable classifier selection for facial expression classification
Author/Authors :
Marios Kyperountas، نويسنده , , Marios and Tefas، نويسنده , , Anastasios and Pitas، نويسنده , , Ioannis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
A novel facial expression classification (FEC) method is presented and evaluated. The classification process is decomposed into multiple two-class classification problems, a choice that is analytically justified, and unique sets of features are extracted for each classification problem. Specifically, for each two-class problem, an iterative feature selection process that utilizes a class separability measure is employed to create salient feature vectors (SFVs), where each SFV is composed of a selected feature subset. Subsequently, two-class discriminant analysis is applied on the SFVs to produce salient discriminant hyper-planes (SDHs), which are used to train the corresponding two-class classifiers. To properly integrate the two-class classification results and produce the FEC decision, a computationally efficient and fast classification scheme is developed. During each step of this scheme, the most reliable classifier is identified and utilized, thus, a more accurate final classification decision is produced. The JAFFE and the MMI databases are used to evaluate the performance of the proposed salient-feature-and-reliable-classifier selection (SFRCS) methodology. Classification rates of 96.71% and 93.61% are achieved under the leave-one-sample-out evaluation strategy, and 85.92% under the leave-one-subject-out evaluation strategy.
Keywords :
Facial expression classification , Classifier selection , Two-class classification , Salient feature selection
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION