Title of article :
Spoofing protection for fingerprint scanner by fusing ridge signal and valley noise
Author/Authors :
Tan، نويسنده , , Bozhao and Schuckers، نويسنده , , Stephanie، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Biometric fingerprint scanners are positioned to provide improved security in a great span of applications from government to private. However, one highly publicized vulnerability is that it is possible to spoof a variety of fingerprint scanners using artificial fingers made from Play-Doh, gelatin and silicone molds. Therefore, it is necessary to offer protection for fingerprint systems against these threats. In this paper, an anti-spoofing detection method is proposed which is based on ridge signal and valley noise analysis, to quantify perspiration patterns along ridges in live subjects and noise patterns along valleys in spoofs. The signals representing gray level patterns along ridges and valleys are explored in spatial, frequency and wavelet domains. Based on these features, separation (live/spoof) is performed using standard pattern classification tools including classification trees and neural networks. We test this method on a larger dataset than previously considered which contains 644 live fingerprints (81 subjects with 2 fingers for an average of 4 sessions) and 570 spoof fingerprints (made from Play-Doh, gelatin and silicone molds in multiple sessions) collected from the Identix fingerprint scanner. Results show that the performance can reach 99.1% correct classification overall. The proposed anti-spoofing method is purely software based and integration of this method can provide protection for fingerprint scanners against gelatin, Play-Doh and silicone spoof fingers.
Keywords :
Fingerprint scanner , Anti-spoofing , Fingerprint ridge and valley , Decision tree , neural network
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION