Title of article :
Multi-environment model adaptation based on vector Taylor series for robust speech recognition
Author/Authors :
Lü، نويسنده , , Yong and Wu، نويسنده , , Haiyang and Zhou، نويسنده , , Lin and Wu، نويسنده , , Zhenyang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
3093
To page :
3099
Abstract :
In this paper, we propose a multi-environment model adaptation method based on vector Taylor series (VTS) for robust speech recognition. In the training phase, the clean speech is contaminated with noise at different signal-to-noise ratio (SNR) levels to produce several types of noisy training speech and each type is used to obtain a noisy hidden Markov model (HMM) set. In the recognition phase, the HMM set which best matches the testing environment is selected, and further adjusted to reduce the environmental mismatch by the VTS-based model adaptation method. In the proposed method, the VTS approximation based on noisy training speech is given and the testing noise parameters are estimated from the noisy testing speech using the expectation-maximization (EM) algorithm. The experimental results indicate that the proposed multi-environment model adaptation method can significantly improve the performance of speech recognizers and outperforms the traditional model adaptation method and the linear regression-based multi-environment method.
Keywords :
Model adaptation , Vector Taylor series , Multi-environment model , speech recognition
Journal title :
PATTERN RECOGNITION
Serial Year :
2010
Journal title :
PATTERN RECOGNITION
Record number :
1733695
Link To Document :
بازگشت