Title of article :
Graph-based classification of multiple observation sets
Author/Authors :
Kokiopoulou، نويسنده , , E. and Frossard، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
3988
To page :
3997
Abstract :
We consider the problem of classification of an object given multiple observations that possibly include different transformations. The possible transformations of the object generally span a low-dimensional manifold in the original signal space. We propose to take advantage of this manifold structure for the effective classification of the object represented by the observation set. In particular, we design a low complexity solution that is able to exploit the properties of the data manifolds with a graph-based algorithm. Hence, we formulate the computation of the unknown label matrix as a smoothing process on the manifold under the constraint that all observations represent an object of one single class. It results into a discrete optimization problem, which can be solved by an efficient and simple, yet effective, algorithm. We demonstrate the performance of the proposed graph-based algorithm in the classification of sets of multiple images. Moreover, we show its high potential in video-based face recognition, where it outperforms state-of-the-art solutions that fall short of exploiting the manifold structure of the face image data sets.
Keywords :
Multi-view object recognition , Multiple observations sets , Video face recognition , Graph-based classification
Journal title :
PATTERN RECOGNITION
Serial Year :
2010
Journal title :
PATTERN RECOGNITION
Record number :
1733837
Link To Document :
بازگشت