Title of article :
Enhanced Local Subspace Affinity for feature-based motion segmentation
Author/Authors :
Michele Zappella، نويسنده , , L. and Lladَ، نويسنده , , X. and Provenzi، نويسنده , , E. and Salvi، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
We present a new motion segmentation algorithm: the Enhanced Local Subspace Affinity (ELSA). Unlike Local Subspace Affinity, ELSA is robust in a variety of conditions even without manual tuning of its parameters. This result is achieved thanks to two improvements. The first is a new model selection technique for the estimation of the trajectory matrix rank. The second is an estimation of the number of motions based on the analysis of the eigenvalue spectrum of the Symmetric Normalized Laplacian matrix. Results using the Hopkins155 database and synthetic sequences are presented and compared with state of the art techniques.
Keywords :
Motion Segmentation , Model selection , Cluster number estimation , Manifold clustering
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION