Title of article :
Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
Author/Authors :
Triguero، نويسنده , , Isaac and Garcيa، نويسنده , , Salvador and Herrera، نويسنده , , Francisco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
901
To page :
916
Abstract :
Nearest neighbor classification is one of the most used and well known methods in data mining. Its simplest version has several drawbacks, such as low efficiency, high storage requirements and sensitivity to noise. Data reduction techniques have been used to alleviate these shortcomings. Among them, prototype selection and generation techniques have been shown to be very effective. Positioning adjustment of prototypes is a successful trend within the prototype generation methodology. ionary algorithms are adaptive methods based on natural evolution that may be used for searching and optimization. Positioning adjustment of prototypes can be viewed as an optimization problem, thus it can be solved using evolutionary algorithms. This paper proposes a differential evolution based approach for optimizing the positioning of prototypes. Specifically, we provide a complete study of the performance of four recent advances in differential evolution. Furthermore, we show the good synergy obtained by the combination of a prototype selection stage with an optimization of the positioning of prototypes previous to nearest neighbor classification. The results are contrasted with non-parametrical statistical tests and show that our proposals outperform previously proposed methods.
Keywords :
differential evolution , Prototype generation , Prototype selection , Evolutionary algorithms , Classification
Journal title :
PATTERN RECOGNITION
Serial Year :
2011
Journal title :
PATTERN RECOGNITION
Record number :
1733994
Link To Document :
بازگشت