Title of article :
Global optimization of wavelet-domain hidden Markov tree for image segmentation
Author/Authors :
Zhang، نويسنده , , Yinhui and He، نويسنده , , Zifen and Zhang، نويسنده , , Yunsheng and Wu، نويسنده , , Xing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
2811
To page :
2818
Abstract :
This work presents a global energy minimization method for multiscale image segmentation using convex optimization theory. The construction of energy function is motivated by the intuition that the larger the entropy, the less a priori information one has on the value of the random variables. First, we represent the wavelet-domain hidden Markov tree (WHMT) model of the original image as a structured energy function, which is proved convex in marginal distributions. Next, we derive the maximum lower bound of the energy function through Lagrange dual transform for the purpose of incorporating marginal constraints into optimization. Finally, a modified belief propagation optimization algorithm is used to perform global energy minimization of the dual convex energy function. Experiments on real image segmentation problems demonstrate the superior performance of this new algorithm when compared with nonconvex ones.
Keywords :
Lagrange dual , Convex energy function , Energy minimization , Hidden Markov tree , image segmentation , global optimization , Multiscale
Journal title :
PATTERN RECOGNITION
Serial Year :
2011
Journal title :
PATTERN RECOGNITION
Record number :
1734198
Link To Document :
بازگشت