Title of article :
Fast affinity propagation clustering: A multilevel approach
Author/Authors :
Shang، نويسنده , , Fanhua and Jiao، نويسنده , , L.C. and Shi، نويسنده , , Jiarong and Wang، نويسنده , , Fei and Gong، نويسنده , , Maoguo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
13
From page :
474
To page :
486
Abstract :
In this paper, we propose a novel Fast Affinity Propagation clustering approach (FAP). FAP simultaneously considers both local and global structure information contained in datasets, and is a high-quality multilevel graph partitioning method that can implement both vector-based and graph-based clustering. First, a new Fast Sampling algorithm (FS) is proposed to coarsen the input sparse graph and choose a small number of final representative exemplars. Then a density-weighted spectral clustering method is presented to partition those exemplars on the global underlying structure of data manifold. Finally, the cluster assignments of all data points can be achieved through their corresponding representative exemplars. Experimental results on two synthetic datasets and many real-world datasets show that our algorithm outperforms the state-of-the-art original affinity propagation and spectral clustering algorithms in terms of speed, memory usage, and quality on both vector-based and graph-based clustering.
Keywords :
Clustering , affinity propagation , graph partitioning , Spectral clustering , Manifold structure
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734290
Link To Document :
بازگشت