Title of article :
Overlapping Mixtures of Gaussian Processes for the data association problem
Author/Authors :
Lلzaro-Gredilla، نويسنده , , Miguel and Van Vaerenbergh، نويسنده , , Steven and Lawrence، نويسنده , , Neil D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
1386
To page :
1395
Abstract :
In this work we introduce a mixture of GPs to address the data association problem, i.e., to label a group of observations according to the sources that generated them. Unlike several previously proposed GP mixtures, the novel mixture has the distinct characteristic of using no gating function to determine the association of samples and mixture components. Instead, all the GPs in the mixture are global and samples are clustered following “trajectories” across input space. We use a non-standard variational Bayesian algorithm to efficiently recover sample labels and learn the hyperparameters. We show how multi-object tracking problems can be disambiguated and also explore the characteristics of the model in traditional regression settings.
Keywords :
Gaussian processes , Marginalized variational inference , Bayesian models
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734413
Link To Document :
بازگشت