Title of article :
Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data
Author/Authors :
Plumpton، نويسنده , , Catrin O. and Kuncheva، نويسنده , , Ludmila I. and Oosterhof، نويسنده , , Nikolaas N. and Johnston، نويسنده , , Stephen J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
2101
To page :
2108
Abstract :
Functional magnetic resonance imaging (fMRI) provides a spatially accurate measure of brain activity. Real-time classification allows the use of fMRI in neurofeedback experiments. With limited labelled data available, a fixed pre-trained classifier may be inaccurate. We propose that streaming fMRI data may be classified using a classifier ensemble which is updated through naive labelling. Naive labelling is a protocol where in the absence of ground truth, updates are carried out using the label assigned by the classifier. We perform experiments on three fMRI datasets to demonstrate that naive labelling is able to improve upon a pre-trained initial classifier.
Keywords :
classifier ensembles , Online classification , Naive labelling , Functional magnetic resonance imaging (fMRI)
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734510
Link To Document :
بازگشت