Title of article :
Confidence bands for least squares support vector machine classifiers: A regression approach
Author/Authors :
De Brabanter، نويسنده , , K. and Karsmakers، نويسنده , , P. and De Brabanter، نويسنده , , J. and Suykens، نويسنده , , J.A.K. and De Moor، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
2280
To page :
2287
Abstract :
This paper presents bias-corrected 100 ( 1 − α ) % simultaneous confidence bands for least squares support vector machine classifiers based on a regression framework. The bias, which is inherently present in every nonparametric method, is estimated using double smoothing. In order to obtain simultaneous confidence bands we make use of the volume-of-tube formula. We also provide extensions of this formula in higher dimensions and show that the width of the bands are expanding with increasing dimensionality. Simulations and data analysis support its usefulness in practical real life classification problems.
Keywords :
bias , Kernel based classification , Variance , Linear smoother , Higher-order kernel , Simultaneous confidence intervals
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734539
Link To Document :
بازگشت