Title of article :
A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data
Author/Authors :
He، نويسنده , , Yanyan and Yousuff Hussaini، نويسنده , , M. and Ma، نويسنده , , Jianwei and Shafei، نويسنده , , Behrang and Steidl، نويسنده , , Gabriele، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
3463
To page :
3471
Abstract :
The objective function of the original (fuzzy) c-mean method is modified by a regularizing functional in the form of total variation (TV) with regard to gradient sparsity, and a regularization parameter is used to balance clustering and smoothing. An alternating direction method of multipliers in conjunction with the fast discrete cosine transform is used to solve the TV-regularized optimization problem. The new algorithm is tested on both synthetic and real data, and is demonstrated to be effective and robust in treating images with noise and missing data (incomplete data).
Keywords :
Fuzzy C-Means , Multi-class labeling , Alternating direction method of multipliers , Sparsity-promoting method , Noisy and incomplete data , MRI segmentation
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734788
Link To Document :
بازگشت