Title of article :
Recognition of Chinese artists via windowed and entropy balanced fusion in classification of their authored ink and wash paintings (IWPs)
Author/Authors :
Sheng، نويسنده , , Jiachuan and Jiang، نويسنده , , Jianmin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
As one of the most important cultural heritages, ink and wash paintings (IWPs) play an important role in the world of traditional Chinese arts. In comparison with western arts, the Chinese IWPs have the unique feature that the art form is primarily populated with limited number of content elements, such as stones, mountains, flowers, and animals etc. and hence most likely different art pieces share similar content, making it difficult to differentiate in terms of content alone. In this paper, we propose to extract histogram-based local feature and global feature to characterize different aspects of art styles, and such features are applied to drive neural networks to complete the classification of IWPs in terms of individual artistic descriptors. We then propose a windowed and entropy balanced fusion scheme to make integrated decisions to optimize the final classification and recognition results. Extensive evaluation via experiments is also reported, which supports that the proposed algorithm achieves good performances, outperforming the existing benchmark techniques and hence providing an excellent potential for computerized analysis and management of traditional Chinese IWPs.
Keywords :
Style-based classification of art work , Recognition of Chinese artists via their authored IWPs , Analysis of ink wash paintings
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION