Title of article :
An efficient color quantization based on generic roughness measure
Author/Authors :
Yue، نويسنده , , X.D. and Miao، نويسنده , , D.Q. and Cao، نويسنده , , L.B. and Wu، نويسنده , , Q. and Chen، نويسنده , , Y.F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
1777
To page :
1789
Abstract :
Color quantization is a process to compress image color space while minimizing visual distortion. The quantization based on preclustering has low computational complexity but cannot guarantee quantization precision. The quantization based on postclustering can produce high quality quantization results. However, it has to traverse image pixels iteratively and suffers heavy computational burden. Its computational complexity was not reduced although the revised versions have improved the precision. In the work of color quantization, balancing quantization quality and quantization complexity is always a challenging point. In this paper, a two-stage quantization framework is proposed to achieve this balance. In the first stage, high-resolution color space is initially compressed to a condensed color space by thresholding roughness indices. Instead of linear compression, we propose generic roughness measure to generate the delicate segmentation of image color. In this way, it causes less distortion to the image. In the second stage, the initially compressed colors are further clustered to a palette using Weighted Rough K-means to obtain final quantization results. Our objective is to design a postclustering quantization strategy at the color space level rather than the pixel level. Applying the quantization in the precisely compressed color space, the computational cost is greatly reduced; meanwhile, the quantization quality is maintained. The substantial experimental results validate the high efficiency of the proposed quantization method, which produces high quality color quantization while possessing low computational complexity.
Keywords :
color quantization , Generic roughness measure , thresholding , Clustering
Journal title :
PATTERN RECOGNITION
Serial Year :
2014
Journal title :
PATTERN RECOGNITION
Record number :
1736201
Link To Document :
بازگشت