Title of article :
Centroid index: Cluster level similarity measure
Author/Authors :
Frنnti، نويسنده , , Pasi and Rezaei، نويسنده , , Mohammad and Zhao، نويسنده , , Qinpei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
3034
To page :
3045
Abstract :
In clustering algorithm, one of the main challenges is to solve the global allocation of the clusters instead of just local tuning of the partition borders. Despite this, all external cluster validity indexes calculate only point-level differences of two partitions without any direct information about how similar their cluster-level structures are. In this paper, we introduce a cluster level index called centroid index. The measure is intuitive, simple to implement, fast to compute and applicable in case of model mismatch as well. To a certain extent, we expect it to generalize other clustering models beyond the centroid-based k-means as well.
Keywords :
Similarity measure , k-means , Clustering , External Validity
Journal title :
PATTERN RECOGNITION
Serial Year :
2014
Journal title :
PATTERN RECOGNITION
Record number :
1736519
Link To Document :
بازگشت