Title of article :
Multivariate online kernel density estimation with Gaussian kernels
Author/Authors :
Kristan، نويسنده , , Matej and Leonardis، نويسنده , , Ale? and Sko?aj، نويسنده , , Danijel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
2630
To page :
2642
Abstract :
We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDEʹs complexity low. We compare the proposed online KDE to the state-of-the-art approaches on examples of estimating stationary and non-stationary distributions, and on examples of classification. The results show that the online KDE outperforms or achieves a comparable performance to the state-of-the-art and produces models with a significantly lower complexity while allowing online adaptation.
Keywords :
Online models , Probability density estimation , Kernel density estimation , Gaussian mixture models
Journal title :
PATTERN RECOGNITION
Serial Year :
2011
Journal title :
PATTERN RECOGNITION
Record number :
1736864
Link To Document :
بازگشت