Title of article :
Measuring the dimension of partially embedded networks
Author/Authors :
Kondor، نويسنده , , Dلniel and Mلtray، نويسنده , , Péter and Csabai، نويسنده , , Istvلn and Vattay، نويسنده , , Gلbor، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network’s large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P ( ρ ) ∼ 1 / ρ . We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures.
Keywords :
Complex network , Dimension measurement , Diffusion on networks , spectral dimension
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications