Title of article :
Three-dimensional finite-difference lattice Boltzmann model and its application to inviscid compressible flows with shock waves
Author/Authors :
He، نويسنده , , Yaling and Liu، نويسنده , , Qing and Li، نويسنده , , Qing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
13
From page :
4884
To page :
4896
Abstract :
In this paper, a three-dimensional (3D) finite-difference lattice Boltzmann model for simulating compressible flows with shock waves is developed in the framework of the double-distribution-function approach. In the model, a density distribution function is adopted to model the flow field, while a total energy distribution function is adopted to model the temperature field. The discrete equilibrium density and total energy distribution functions are derived from the Hermite expansions of the continuous equilibrium distribution functions. The discrete velocity set is obtained by choosing the abscissae of a suitable Gauss–Hermite quadrature with sufficient accuracy. In order to capture the shock waves in compressible flows and improve the numerical accuracy and stability, an implicit–explicit finite-difference numerical technique based on the total variation diminishing flux limitation is introduced to solve the discrete kinetic equations. The model is tested by numerical simulations of some typical compressible flows with shock waves ranging from 1D to 3D. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.
Keywords :
Hermite expansion , compressible flows , Shock wave , Lattice Boltzmann model , finite-difference
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2013
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
1737354
Link To Document :
بازگشت