Title of article :
Poly(N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: Synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels
Author/Authors :
Song، نويسنده , , Junzhang and Yu، نويسنده , , Rentong and Wang، نويسنده , , Lei and Zheng، نويسنده , , Sixun and Li، نويسنده , , Xiuhong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
11
From page :
2340
To page :
2350
Abstract :
Poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone) diblock copolymer (PNIPAAm-b-PVPy) was successfully synthesized via sequential reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process, in which the chain transfer agent of xanthate was in situ afforded via the reaction of isopropylxanthic disulfide (DIP) with 2,2-azobisisobutylnitrile (AIBN). The RAFT/MADIX technique was employed to prepare the poly(N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers (PNIPAAm-g-PVPy) with N,N-methylenebisacrylamide as the crosslinking agent. The comb-like PNIPAAm-g-PVPy copolymer networks with PVPy as the pendent chains were characterized by means of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS). The hydrogel behavior of PNIPAAm-g-PVPy networks was investigated in terms of swelling, deswelling and reswelling tests. With the inclusion of PVPy chains, the swelling ratios of the hydrogels were significantly enhanced compared to the control PNIPAAm hydrogel. It is found that the PVPy-modified PNIPAAm hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of the comb-like architectures in the copolymer networks.
Keywords :
Poly(N-isopropylacrylamide) , Poly(N-vinylpyrrolidone) , hydrogels
Journal title :
Polymer
Serial Year :
2011
Journal title :
Polymer
Record number :
1737436
Link To Document :
بازگشت