Title of article :
Modeling natural gas market volatility using GARCH with different distributions
Author/Authors :
Lv، نويسنده , , Xiaodong and Shan، نويسنده , , Xian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.
Keywords :
natural gas , Multifractality , Fat-tail distribution , Volatility , GARCH
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications