Title of article :
Multi- pattern classification of polarization curves
Author/Authors :
Fabbri، نويسنده , , Ricardo and Bastos، نويسنده , , Ivan N. and Neto، نويسنده , , Francisco D. Moura and Lopes، نويسنده , , Francisco J.P. and Gonçalves، نويسنده , , Wesley N. and Bruno، نويسنده , , Odemir M. Bruno، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
332
To page :
339
Abstract :
Several experimental measurements are expressed in the form of one-dimensional profiles, for which there is a scarcity of methodologies able to classify the pertinence of a given result to a specific group. The polarization curves that evaluate the corrosion kinetics of electrodes in corrosive media are applications where the behavior is chiefly analyzed from profiles. Polarization curves are indeed a classic method to determine the global kinetics of metallic electrodes, but the strong nonlinearity from different metals and alloys can overlap and the discrimination becomes a challenging problem. Moreover, even finding a typical curve from replicated tests requires subjective judgment. In this paper, we used the so-called multi- q approach based on the Tsallis statistics in a classification engine to separate the multiple polarization curve profiles of two stainless steels. We collected 48 experimental polarization curves in an aqueous chloride medium of two stainless steel types, with different resistance against localized corrosion. Multi- q pattern analysis was then carried out on a wide potential range, from cathodic up to anodic regions. An excellent classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic), high (anodic), and both potential ranges, respectively, using only 2% of the original profile data. These results show the potential of the proposed approach towards efficient, robust, systematic and automatic classification of highly nonlinear profile curves.
Keywords :
polarization curve , Tsallis entropy , Multi- q pattern analysis , Profile pattern classification
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2014
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
1737872
Link To Document :
بازگشت