Title of article :
Methyl methacrylate polymerization in nanoporous confinement
Author/Authors :
Zhao، نويسنده , , Haoyu and Simon، نويسنده , , Sindee L.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
6
From page :
4093
To page :
4098
Abstract :
The effect of nanoconfinement on the rate of isothermal polymerization of methyl methacrylate (MMA) polymerization is investigated using differential scanning calorimetry. Controlled pore glass (CPG) with pore diameters of 13, 50, and 111 nm are used for the confinement of the reaction. Both hydrophilic and hydrophobic pore surfaces are studied. The effective reaction rate and the apparent activation energy at low conversions, prior to autoacceleration, are unchanged in hydrophobic pores. On the other hand, in hydrophilic pores, the reaction rate increases by as much as a factor of 8 in the smallest 13 nm hydrophilic pores, and the effective activation energy decreases. For both pore surfaces, the time required to reach autoacceleration decreases with decreasing pore size, with the effect much more pronounced in the hydrophilic pores. The results are consistent with a model of nanoconfined free radical polymerization which accounts for suppressed termination due to a decrease in the diffusivity of nanoconfined chains.
Keywords :
Nanoconfinement , PMMA , Free radical polymerization
Journal title :
Polymer
Serial Year :
2011
Journal title :
Polymer
Record number :
1737952
Link To Document :
بازگشت