Title of article :
Percolation of interacting classical dimers on the square lattice
Author/Authors :
Li، نويسنده , , Yang and Wu، نويسنده , , Dayan and Huang، نويسنده , , Xianshan and Ding، نويسنده , , Chengxiang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We study the percolation properties of the interacting classical dimer model on the square lattice by means of Monte Carlo simulations and finite-size scaling analysis. We define Ising clusters based on the dimer configuration; the percolation point of the clusters coincides with the critical point of the Kosterlitz–Thouless transition of the dimer model, which is T c = 0.654 ( 2 ) . Furthermore, we find that the largest cluster at the Kosterlitz–Thouless point is a fractal, with fractal dimension D c = 1.874 ( 2 ) , which coincides with the critical exponent describing the critical behavior of the dimer–dimer correlation function, which is theoretically predicted to be 15/8.
Keywords :
fractal , Percolation model , Dimer model , Kosterlitz–Thouless transition
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications