Title of article :
Enzyme and acid catalyzed degradation of PEG45-b-PBO0,6,9-b-PCL60 micelles: Increased hydrolytic stability by engineering the hydrophilic–hydrophobic interface
Author/Authors :
Zhu، نويسنده , , Xiaobo and Sharma، نويسنده , , Vishnu D. and Fryd، نويسنده , , Michael and Ilies، نويسنده , , Marc A. and Wayland، نويسنده , , Bradford B.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
8
From page :
2879
To page :
2886
Abstract :
Acid and Pseudomonas (P.) cepacia lipase catalyzed ester hydrolysis were evaluated for block copolymer micelles generated from low polydispersity PEG45-b-PBOn-b-PCL60 (n = 0, 6, 9). Moving the hydrophilic–hydrophobic junction away from the PCL micelle core–water interface by inserting a short hydrophobic non-hydrolyzable PBO segment between the PEG and PCL blocks was studied as a strategy for tuning the micelle hydrolytic stability. 1H NMR was applied in evaluating the micelle and solution compositions and to determine kinetic parameters. Acid and lipase catalyzed micelle hydrolysis proceed by distinctly different routes. Micelles from the triblock copolymers PEG45-b-PBOn-b-PCL60 (n = 6, 9) are observed to react substantially slower and persist intact longer in the presence of both strong acids and lipase enzymes than micelles of the parent diblock copolymer (PEG45-b-PCL60).
Keywords :
Block copolymer micelle , acid hydrolysis , Hydrolytic degradation , Hydrophilic–hydrophobic interface , Lipase Enzyme
Journal title :
Polymer
Serial Year :
2013
Journal title :
Polymer
Record number :
1740463
Link To Document :
بازگشت