Title of article :
Pharmacokinetics and in vivo chemosuppressive activity studies on cryptolepine hydrochloride and cryptolepine hydrochloride-loaded gelatine nanoformulation designed for parenteral administration for the treatment of malaria
Author/Authors :
Kuntworbe، نويسنده , , N. and Ofori، نويسنده , , M. and Addo، نويسنده , , P. and Tingle، نويسنده , , M. and Al-Kassas، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The main objective of this investigation was to establish the pharmacokinetics profile and in vivo chemosuppressive activities of cryptolepine hydrochloride-loaded gelatine nanoparticles (CHN) designed for parenteral administration for the treatment of malaria in comparison to the drug free in solution (CHS). Single-dose pharmacokinetics was investigated in Wistar rats by administering CHN or CHS (equivalent to 10 mg/kg of drug) by IV bolus injection via the lateral tail vein. The drug concentration in plasma was monitored over a 24-h period following administration. Chemosuppressive activity was investigated in Wistar rats challenged with P berghei parasites. Animals were given a daily dose of either CHN or CHS, equivalent to 2.5–100 mg/kg by intraperitoneal injection. The level of parasitaemia was determined by light microscopy by examining Giemsa-stained thin blood smears prepared from the tail end on day four of infection. It was found that CHN attained a higher (4.5-folds) area under the curve (AUC (0–24)) compared to CHS. CHS however produced a higher volume of distribution (4-folds). Distribution and elimination rates were higher with CHS which resulted in a lower (11.7 h) elimination half-life compared to that of CHN (21.85 h). The superior pharmacokinetic profile of CHN translated into superior chemosuppressive activity at all dose levels relative to CHS. As a conclusion, loading cryptolepine hydrochloride into gelatine nanoparticles improved both pharmacokinetics and in vivo antiplasmodial activity of the compound with the highest chemosuppression (97.89 ± 3.10) produced by 100 mg/kg of CHN.
Keywords :
Cryptolepine hydrochloride , Pharmacokinetics , Nanoparticles , Chemosuppression
Journal title :
Acta Tropica
Journal title :
Acta Tropica