Title of article :
Synthesis of PAA-g-PNIPAM well-defined graft polymer by sequential RAFT and SET-LRP and its application in preparing size-controlled super-paramagnetic Fe3O4 nanoparticles as a stabilizer
Author/Authors :
Jiang، نويسنده , , Xiuyu and Zhai، نويسنده , , Sujuan and Jiang، نويسنده , , Xue and Lu، نويسنده , , Guolin and Huang، نويسنده , , Xiaoyu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
A series of well-defined double hydrophilic graft copolymers, poly(acrylic acid)-g-poly(N-isopropylacrylamide) (PAA-g-PNIPAM), was employed as a novel water-soluble coating for constructing superparamagnetic iron oxide nanoparticles. The copolymer was synthesized via a three-step procedure: firstly, a well-defined hydrophobic PtBA-based backbone, poly(tert-butyl 2-((2-chloropropanoyloxy)-methyl)acrylate)-co-poly(tert-butyl acrylate), (PtBCPMA19-co-PtBA18), was prepared through RAFT copolymerization of a new trifunctional acrylic monomer, tert-butyl 2-((2-chloropropanoyloxy)methyl)acrylate and tert-butyl acrylate; secondly, taking this backbone as a macroinitiator to initiate SET-LRP of N-isopropylacrylamide resulted in well-defined (poly(tert-butyl 2-((2-chloropropanoyloxy)methyl)-acrylate)-co-poly(tert-butyl acrylate))-g-poly(N-isopropylacrylamide) ((PtBCPMA-co-PtBA)-g-PNIPAM) amphiphilic graft copolymers with relatively narrow polydispersities (Mw/Mn ≤ 1.31); thirdly, handling (PtBCPMA-co-PtBA)-g-PNIPAM in acidic conditions afforded PAA-g-PNIPAM graft copolymers. The resulting PAA-g-PNIPAM copolymers were directly utilized as a polymeric stabilizer in the preparation of superparamagnetic Fe3O4 nanoparticles. The particle size can be readily tuned in the range of 12.1–23.2 nm by varying the amount of PAA-g-PNIPAM copolymer or the length of PNIPAM side chain. Besides, the structure and properties of prepared Fe3O4/polymer nanocomposites were characterized by XRD, FT-IR, TGA, TEM, and magnetic measurement in detail.
Keywords :
SET-LRP , RAFT , nanocomposites