Title of article :
Disruption of Platelet-Derived Growth Factor–Dependent Phosphatidylinositol 3-Kinase and Phospholipase Cγ 1 Activity Abolishes Vascular Smooth Muscle Cell Proliferation and Migration and Attenuates Neointima Formation In Vivo
Author/Authors :
Caglayan، نويسنده , , Evren and Vantler، نويسنده , , Marius and Leppنnen، نويسنده , , Olli and Gerhardt، نويسنده , , Felix and Mustafov، نويسنده , , Lenard and ten Freyhaus، نويسنده , , Henrik and Kappert، نويسنده , , Kai and Odenthal، نويسنده , , Margarete and Zimmermann، نويسنده , , Wolfram H. and Tallquist، نويسنده , , Michelle D. and Rosenkranz، نويسنده , , Stephan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Objectives
ted the hypothesis whether selective blunting of platelet-derived growth factor (PDGF)–dependent vascular smooth muscle cell (VSMC) proliferation and migration is sufficient to prevent neointima formation after vascular injury.
ound
vent neointima formation and stent thrombosis after coronary interventions, it is essential to inhibit VSMC proliferation and migration without harming endothelial cell function. The role of PDGF—a potent mitogen and chemoattractant for VSMC that does not affect endothelial cells—for neointima formation remains controversial.
s
ipher the signaling pathways that control PDGF beta receptor (βPDGFR)–driven VSMC proliferation and migration, we characterized 2 panels of chimeric CSF1R/βPDGFR mutants in which the binding sites for βPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase [PI3K], GTPase activating protein of ras, SHP-2, phospholipase Cγ 1 [PLCγ]) were individually mutated. Based on in vitro results, the importance of PDGF-initiated signals for neointima formation was investigated in genetically modified mice.
s
sults indicate that the chemotactic response to PDGF requires the activation of Src, PI3K, and PLCγ, whereas PDGF-dependent cell cycle progression is exclusively mediated by PI3K and PLCγ. These 2 signaling molecules contribute to signal relay of the βPDGFR by differentially regulating cyclin D1 and p27kip1. Blunting of βPDGFR-induced PI3K and PLCγ signaling by a combination mutant (F3) completely abolished the mitogenic and chemotactic response to PDGF. Disruption of PDGF-dependent PI3K and PLCγ signaling in mice expressing the F3 receptor led to a profound reduction of neointima formation after balloon injury.
sions
ing by the activated βPDGFR, particularly through PI3K and PLCγ, is crucial for neointima formation after vascular injury. Disruption of these specific signaling pathways is sufficient to attenuate pathogenic processes such as vascular remodeling in vivo.
Keywords :
PLC? , PI-3 kinase , platelet-derived growth factor , Proliferation , restenosis
Journal title :
JACC (Journal of the American College of Cardiology)
Journal title :
JACC (Journal of the American College of Cardiology)