Title of article :
Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility
Author/Authors :
Bertram، نويسنده , , James P. and Jay، نويسنده , , Steven M. and Hynes، نويسنده , , Sara R. and Robinson، نويسنده , , Rebecca and Criscione، نويسنده , , Jason M. and Lavik، نويسنده , , Erin B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Poly(lactic-co-glycolic acid) (PLGA) is one of the more widely used polymers for biomedical applications. Nonetheless, PLGA lacks chemical moieties that facilitate cellular interactions and surface chemistries. Furthermore, incorporation of hydrophilic molecules is often problematic. The integration of polymer functionalities would afford the opportunity to alter device characteristics, thereby enabling control over drug interactions, conjugations and cellular phenomena. In an effort to introduce amine functionalities and improve polymer versatility, we synthesized two block copolymers (PLGA-PLL 502H and PLGA-PLL 503H) composed of PLGA and poly(ε-carbobenzoxy-l-lysine) utilizing dicyclohexyl carbodiimide coupling. PLGA-PLL microspheres encapsulated approximately sixfold (502H) and threefold (503H) more vascular endothelial growth factor, and 41% (503H) more ciliary neurotrophic factor than their PLGA counterparts. While the amine functionalities were amenable to the delivery of large molecules and surface conjugations, they did not compromise polymer biocompatibility. With the versatile combination of properties, biocompatibility and ease of synthesis, these block copolymers have the potential for diverse utility in the fields of drug delivery and tissue engineering.
Keywords :
Poly(amino acid) , CNTF , PLGA , VEGF , block copolymers
Journal title :
Acta Biomaterialia
Journal title :
Acta Biomaterialia