• Title of article

    Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide

  • Author/Authors

    Lynn ، نويسنده , , Aaron D. and Bryant، نويسنده , , Stephanie J.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    10
  • From page
    123
  • To page
    132
  • Abstract
    Macrophages are phenotypically diverse cells performing a number of functions involved in immunity, inflammation, wound healing, tissue homeostasis and the foreign body reaction. In the latter, the type of biomaterial and the surrounding environment likely have an impact on macrophage phenotype and, subsequently, the severity of the reaction. The objectives for this study were to characterize the phenotype of bone marrow-derived murine macrophages in response to poly(ethylene glycol) (PEG)-based hydrogels, a promising class of materials for cell delivery. Gene expression was used as a measure of phenotype and characterized by IL-1β, TNF-α, iNOS, IL-12β, arginase, VEGF-A, and IL-10. Macrophages were cultured on PEG hydrogels, PEG hydrogels with RGD tethers, and medical grade silicone rubber, a well-characterized biomaterial, up to 96 h in the absence and presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Macrophage interrogation led to immediate up-regulation (10×) of IL-1β and TNF-α within 4 h, followed by an increase in IL-10/IL-12β and a subsequent concomitant decrease in the pro-inflammatory genes by 96 h, suggesting a shift from classically activated to a regulatory phenotype. LPS stimulation led to a stronger early up-regulation of pro-inflammatory genes (e.g. 20–30× for IL-1β and TNF-α), followed by upregulation (4–6×) of arginase, suggesting a shift from an elevated classically activated to a wound healing phenotype. Material type played a significant role in regulating pro-inflammatory genes, which was most pronounced with PEG alone. Overall, our findings indicate that macrophages undergo similar phenotypic changes for the materials tested, but the magnitudes of these responses are highly material dependent.
  • Keywords
    Phenotype , IN VITRO , RGD motif , macrophage , Poly(ethylene glycol)
  • Journal title
    Acta Biomaterialia
  • Serial Year
    2011
  • Journal title
    Acta Biomaterialia
  • Record number

    1754528