Title of article :
Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells
Author/Authors :
Barradas، نويسنده , , Ana M.C. and Lachmann، نويسنده , , Kristina and Hlawacek، نويسنده , , Gregor and Frielink، نويسنده , , Cathelijne and Truckenmoller، نويسنده , , Roman and Boerman، نويسنده , , Otto C. and van Gastel، نويسنده , , Raoul and Garritsen، نويسنده , , Henk and Thomas، نويسنده , , Michael and Moroni، نويسنده , , Lorenzo and van Blitterswijk، نويسنده , , Clemens and de Boer، نويسنده , , Jan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
2969
To page :
2977
Abstract :
Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical composition of biomaterials. This concept is very appealing for tissue engineering since instructive properties in bioactive materials can be more economical and time efficient than traditional strategies of cell pre-differentiation in vitro prior to implantation. The biomaterial surface, which is easy to modify due to its accessibility, may provide the necessary signals to elicit a certain cellular behavior. Here, we used gas plasma technology at atmospheric pressure to modify the physicochemical properties of polylactic acid and analyzed how this influenced pre-osteoblast proliferation and differentiation. Tetramethylsilane and 3-aminopropyl-trimethoxysilane with helium as a carrier gas or a mixture of nitrogen and hydrogen were discharged to polylactic acid discs to create different surface chemical compositions, hydrophobicity and microscale topographies. Such modifications influenced protein adsorption and pre-osteoblast cell adhesion, proliferation and osteogenic differentiation. Furthermore polylactic acid treated with tetramethylsilane enhanced osteogenic differentiation compared to the other surfaces. This promising surface modification could be further explored for potential development of bone graft substitutes.
Keywords :
protein adsorption , surface characterization , Biomaterials , cell adhesion , Osteogenic Differentiation
Journal title :
Acta Biomaterialia
Serial Year :
2012
Journal title :
Acta Biomaterialia
Record number :
1756319
Link To Document :
بازگشت