Title of article :
Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2
Author/Authors :
Rene and Hyzy، نويسنده , , S.L. and Olivares-Navarrete، نويسنده , , R. and Hutton، نويسنده , , D.L. and Tan، نويسنده , , C. and Boyan، نويسنده , , B.D. and Schwartz، نويسنده , , Z.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on the osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra = 0.2 μm), sandblasted/acid-etched (SLA, Ra = 3.2 μm) or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blockSmad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol) or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration.
Keywords :
microstructure , inflammation , Bone morphogenetic protein , Titanium , Osteoblast
Journal title :
Acta Biomaterialia
Journal title :
Acta Biomaterialia